

PROBLEM 5.10

Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum absolute value (a) of the shear, (b) of the bending moment.

SOLUTION

Calculate reactions at A and B. Replace distributed load by an equivalent concentrated load after drawing the free body $A C D B$.

$$
\begin{gathered}
+\Sigma M_{B}=0: \quad-5 A+(4)(60)+(2)(60)=0 \\
A=72 \mathrm{kN} \uparrow \\
+\Sigma M_{A}=0: \quad 5 B-(1)(6)-(3)(60)=0 \\
B=48 \mathrm{kN} \uparrow
\end{gathered}
$$

Check $+\uparrow F_{y}=0$:
$72-60-60+48=0$
A to $C . \quad 0<x \leq 2 \mathrm{~m}$

$$
+\uparrow \Sigma F_{y}=0
$$

$$
72-30 x-V=0
$$

$$
V=(72-30 x) \mathrm{kN}
$$

$$
+\Sigma \Sigma M_{J}=0
$$

$$
-72 x+(30 x) \frac{x}{2}+M=0
$$

$$
M=\left(72-15 x^{2}\right) \mathrm{kN} \cdot \mathrm{~m}
$$

C to $D . \quad 2 \mathrm{~m} \leq x<3 \mathrm{~m}$

$+\Sigma M_{J}=0:$

$$
-72 x+(30)(2)(x-1)+M=0
$$

$$
M=(12 x+60) \mathrm{kN} \cdot \mathrm{~m}
$$

PROBLEM 5.10 (Continued)

From the diagrams
(a) $\quad|V|_{\max }=72.0 \mathrm{kN}$ 《
(b) $|M|_{\max }=96.0 \mathrm{kN} \cdot \mathrm{m}$

PROBLEM 5.23

Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum normal stress due to bending.

SOLUTION

Free body $E F G H$. Note that $M_{E}=0$ due to hinge.

$$
\begin{aligned}
+\Sigma M_{E} & =0: 0.6 \mathrm{H}-(0.2)(40)-(0.40)(300)=0 \\
H & =213.33 \mathrm{~N} \\
+\uparrow \Sigma F_{y} & =0: V_{E}-40-300+213.33=0 \\
V_{E} & =126.67 \mathrm{~N}
\end{aligned}
$$

Shear:
E to $F: \quad V=126.67 \mathrm{~N} \cdot \mathrm{~m}$
F to $G: \quad V=86.67 \mathrm{~N} \cdot \mathrm{~m}$
G to $H: \quad V=-213.33 \mathrm{~N} \cdot \mathrm{~m}$
Bending moment at F :

$$
\begin{aligned}
+\Sigma M_{F} & =0: \quad M_{F}-(0.2)(126.67)=0 \\
M_{F} & =25.33 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Bending moment at G :

$$
\begin{aligned}
+\Sigma M_{G} & =0:-M_{G}+(0.2)(213.33)=0 \\
M_{G} & =42.67 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Free body $A B C D E$.

$$
\begin{aligned}
+\Sigma \Sigma M_{B}= & 0.6 A+(0.4)(300)+(0.2)(300) \\
& \quad-(0.2)(126.63)=0 \\
A= & 257.78 \mathrm{~N} \\
+\Sigma \Sigma M_{A}= & 0: \quad-(0.2)(300)-(0.4)(300)-(0.8)(126.67)+0.6 D=0 \\
D= & 468.89 \mathrm{~N}
\end{aligned}
$$

PROBLEM 5.23 (Continued)

Bending moment at B.

$$
\begin{aligned}
A
\end{aligned}
$$

$$
257.78 \mathrm{~V}
$$

Bending moment at C.

$$
\begin{aligned}
+) \Sigma M_{C}=0: & -(0.4)(257.78)+(0.2)(300) \\
& +M_{C}=0
\end{aligned}
$$

$$
M_{C}=43.11 \mathrm{~N} \cdot \mathrm{~m}
$$

Bending moment at D.

$$
\begin{aligned}
+\Sigma \Sigma M_{D} & =0:-M_{D}-(0.2)(213.33)=0 \\
M_{D} & =-25.33 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \max |M|=51.56 \mathrm{~N} \cdot \mathrm{~m} \\
& \begin{aligned}
S & =\frac{1}{6} b h^{2}=\frac{1}{6}(20)(30)^{2} \\
& =3 \times 10^{3} \mathrm{~mm}^{3}=3 \times 10^{-6} \mathrm{~m}^{3}
\end{aligned}
\end{aligned}
$$

Normal stress:

$$
\begin{array}{r}
\sigma=\frac{51.56}{3 \times 10^{-6}}=17.19 \times 10^{6} \mathrm{~Pa} \\
\sigma=17.19 \mathrm{MPa} \\
|V|_{\max }=342 \mathrm{~N} \\
|M|_{\max }=516 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

SOLUTION

Reactions:

$$
\begin{aligned}
& +\left\lceil\sum M_{D}=0: \quad 4 A-64-(24)(2)(1)=0 \quad A=28 \mathrm{kN}\right. \\
& +\uparrow \sum F_{y}=0: \quad-28+D-(24)(2)=0 \quad D=76 \mathrm{kN} \uparrow
\end{aligned}
$$

$$
A \text { to } C: \quad 0<x<2 \mathrm{~m}
$$

$$
\begin{gathered}
+\ \sum F_{y}=0: \quad-V-28=0 \\
V=-28 \mathrm{kN} \\
+) \sum M_{J}=0: \quad M+28 x=0 \\
M=(-28 x) \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

C to $D: \quad 2 \mathrm{~m}<x<4 \mathrm{~m}$

D to $B: \quad 4 \mathrm{~m}<x<6 \mathrm{~m}$

$$
\begin{gathered}
+\uparrow \sum F_{y}=0: \\
\quad V-24(6-x)=0 \\
\quad V=(-24 x+144) \mathrm{kN} \\
+\sum M_{J}=0
\end{gathered}
$$

$$
-M-24(6-x)\left(\frac{6-x}{2}\right)=0
$$

$$
M=-12(6-x)^{2} \mathrm{kN} \cdot \mathrm{~m}
$$

$\max |M|=56 \mathrm{kN} \cdot \mathrm{m}=56 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$
For S250 $\times 52$ section, $\quad S=482 \times 10^{3} \mathrm{~mm}^{3}$
Normal stress: $\sigma=\frac{|M|}{S}=\frac{56 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}}{482 \times 10^{-6} \mathrm{~m}^{3}}=116.2 \times 10^{6} \mathrm{~Pa}$

$$
\sigma=116.2 \mathrm{MPa}
$$

PROBLEM 5.29

Knowing that $P=Q=480 \mathrm{~N}$, determine (a) the distance a for which the absolute value of the bending moment in the beam is as small as possible, (b) the corresponding maximum normal stress due to bending. (See hint of Prob. 5.27.)

SOLUTION

$$
P=480 \mathrm{~N} \quad Q=480 \mathrm{~N}
$$

Reaction at A :

$$
\begin{aligned}
&+\Sigma M_{D}=0:-A a+480(a-0.5) \\
&-480(1-a)=0 \\
& A=\left(960-\frac{720}{a}\right) \mathrm{N}
\end{aligned}
$$

Bending moment at $C: \quad+\sum \Sigma M_{C}=0:-0.5 A+M_{C}=0$

$$
M_{C}=0.5 A=\left(480-\frac{360}{a}\right) \mathrm{N} \cdot \mathrm{~m}
$$

$M(k N \cdot m)$

Bending moment at D :

$$
+\Sigma M_{D}=0:-M_{D}-480(1-a)=0
$$

$$
M_{D}=-480(1-a) \mathrm{N} \cdot \mathrm{~m}
$$

(a) Equate:

$$
\begin{gathered}
-M_{D}=M_{C} \quad 480(1-a)=480-\frac{360}{a} \\
a=0.86603 \mathrm{~m}
\end{gathered}
$$

$$
A=128.62 \mathrm{~N} \quad M_{C}=64.31 \mathrm{~N} \cdot \mathrm{~m} \quad M_{D}=-64.31 \mathrm{~N} \cdot \mathrm{~m}
$$

(b) For rectangular section, $S=\frac{1}{6} b h^{2}$

$$
\begin{aligned}
S & =\frac{1}{6}(12)(13)^{2}=648 \mathrm{~mm}^{3}=648 \times 10^{-9} \mathrm{~m}^{3} \\
\sigma_{\max } & =\frac{|M|_{\max }}{S}=\frac{64.31}{6.48 \times 10^{-9}}=99.2 \times 10^{6} \mathrm{~Pa} \quad \sigma_{\max }=99.2 \mathrm{MPa}
\end{aligned}
$$

PROBLEM 5.45

Draw the shear and bending-moment diagrams for the beam and loading shown, and determine the maximum absolute value (a) of the shear, (b) of the bending moment.

SOLUTION

$$
\begin{aligned}
& +\Sigma M_{A}=0: \\
& 0.075 F_{E F}-(0.2)(300)-(0.6)(300)=0 \\
& \quad F_{E F}=3.2 \times 10^{3} \mathrm{~N} \\
& +\Sigma F_{x}=0: \quad A_{x}-F_{E F}=0 \quad A_{x}=3.2 \times 10^{3} \mathrm{~N} \\
& +\mid \Sigma F_{y}=0: \quad A_{y}-300-300=0 \\
& A_{y}=600 \mathrm{~N}
\end{aligned}
$$

Couple at $D: \quad M_{D}=(0.075)\left(3.2 \times 10^{3}\right)$

$$
=240 \mathrm{~N} \cdot \mathrm{~m}
$$

Shear:

$$
\begin{array}{ll}
A \text { to } C: & V=600 \mathrm{~N} \\
C \text { to } B: & V=600-300=300 \mathrm{~N}
\end{array}
$$

Areas under shear diagram:

$$
\begin{array}{ll}
A \text { to } C: & \\
C \text { to } D: & \\
D V d x=(0.2)(600)=120 \mathrm{~N} \cdot \mathrm{~m} \\
D \text { to } B: & \\
\int V d x=(0.2)(300)=60 \mathrm{~N} \cdot \mathrm{~m} \\
& \left.\int V d x\right)(300)=60 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

Bending moments:

$$
\begin{aligned}
M_{A} & =0 \\
M_{C} & =0+120=120 \mathrm{~N} \cdot \mathrm{~m} \\
M_{D^{-}} & =120+60=180 \mathrm{~N} \cdot \mathrm{~m} \\
M_{D^{+}} & =180-240=-60 \mathrm{~N} \cdot \mathrm{~m} \\
M_{B} & =-60+60=0
\end{aligned}
$$

Maximum $|V|=600 \mathrm{~N}$
Maximum $|M|=180.0 \mathrm{~N} \cdot \mathrm{~m}$

PROBLEM 5.57

Draw the shear and bending-moment diagrams for the beam and loading shown and determine the maximum normal stress due to bending.

SOLUTION

$M(\mathrm{kNm})$

$$
\begin{aligned}
&+\sum \sum M_{B}=0 \\
&-3.6 A+(45)(2.4)(2.4)-16=0 \\
& A=67.6 \mathrm{kN}
\end{aligned}
$$

$$
+\left\lceil\sum M_{A}=0\right.
$$

$$
-(45)(2.4)(1.2)+3.6 B-16=0
$$

$$
B=40.4 \mathrm{kN}
$$

Shear: $\quad V_{A}=67.6 \mathrm{kN}$

$$
V_{C}=67.6-(45)(2.4)=-40.4 \mathrm{kN}
$$

$$
C \text { to } B \quad V=-40.4 \mathrm{kN}
$$

Locate point D where $V=0$

$$
\begin{aligned}
\frac{d}{67.6} & =\frac{2.4-d}{40.4} \quad 1.6 d=2.4 \\
d & =1.5 \mathrm{~m} \quad 2.4-d=0.9 \mathrm{~m}
\end{aligned}
$$

Areas under shear diagram

$$
\begin{array}{ll}
A \text { to } D & \int V d x=\left(\frac{1}{2}\right)(1.5)(67.6)=50.7 \mathrm{kNm} \\
D \text { to } C & \int V d x=\left(\frac{1}{2}\right)(0.9)(-40.4)=-18.18 \mathrm{kNm} \\
C \text { to } B & \int V d x=-(1.2)(40.4)=-48.48 \mathrm{kNm}
\end{array}
$$

Bending moments: $\quad M_{A}=0$

$$
\begin{aligned}
& M_{D}=0+50.7=50.7 \mathrm{kNm} \\
& M_{C}=50.7-18.18=32.52 \mathrm{kNm} \\
& M_{B}=32.52-48.48=-15.96 \mathrm{kNm}
\end{aligned}
$$

Maximum $|M|=50.7 \mathrm{kNm}$

For rectangular cross section

Normal stress

$$
\begin{aligned}
& S=\frac{1}{6} b h^{2}=\left(\frac{1}{6}\right)(75)(250)^{2}=781250 \mathrm{~mm}^{3} \\
& \sigma=\frac{|M|}{S}=\frac{50.7 \times 10^{3}}{781250 \times 10^{-9}}=64.9 \mathrm{MPa}
\end{aligned}
$$

PROBLEM 5.67

5.67 For the beam and loading shown, design the cross section of the beam, knowing that the grade of timber used has an allowable normal stress of 12 MPa .

SOLUTION

Equivalent concentrated load

$$
P=\left(\frac{1}{2}\right)(1.8)(18)=16.2 \mathrm{kN}
$$

Bending moment at A

$$
\begin{aligned}
M_{A} & =(0.6)(16.2)=9.72 \mathrm{kN} \cdot \mathrm{~m} \\
S_{\min } & =\frac{|M|_{\max }}{\sigma_{\mathrm{all}}}=\frac{9.72 \times 10^{3}}{12 \times 10^{6}}=810 \times 10^{-6} \mathrm{~m}^{3}
\end{aligned}
$$

For a square section $S=\frac{1}{6} a^{3}$

$$
\begin{aligned}
a & =\sqrt[3]{6 S} \\
a_{\min } & =\sqrt[3]{(6)\left(810 \times 10^{-6}\right)}=0.169 \mathrm{~m} \\
& =169 \mathrm{~mm}
\end{aligned}
$$

PROBLEM 5.77

Knowing that the allowable normal stress for the steel used is 160 MPa , select the most economical S-shape beam to support the loading shown.

SOLUTION

$$
\begin{array}{cl}
+\sum \sum M_{B}=0: & 0.8 A-(0.4)(2.4)(100)-(1.6)(80)=0 \\
& A=280 \mathrm{kN} \downarrow \\
+\sum M_{A}=0: & 0.8 B-(1.2)(2.4)(100)-(2.4)(80)=0 \\
& B=600 \mathrm{kN} \uparrow
\end{array}
$$

Shear: $\quad V_{A}=-280 \mathrm{kN}$

$$
\begin{aligned}
& V_{B^{-}}=-280-(0.8)(100)=-360 \mathrm{kN} \\
& V_{B^{+}}=-360+600=240 \mathrm{kN} \\
& V_{C}=240-(1.6)(100)=80 \mathrm{kN}
\end{aligned}
$$

Areas under shear diagram:
A to $B: \quad \frac{1}{2}(0.8)(-280-360)=-256 \mathrm{kN} \cdot \mathrm{m}$
B to $C: \quad \frac{1}{2}(1.6)(240+80)=256 \mathrm{kN} \cdot \mathrm{m}$
Bending moments: $\quad M_{A}=0$

$$
\begin{aligned}
& M_{B}=0-256=-256 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{C}=-256+256=0
\end{aligned}
$$

Maximum $|M|=256 \mathrm{kN} \cdot \mathrm{m}=256 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$

$$
\begin{aligned}
& \sigma_{\text {all }}=160 \mathrm{MPa}=160 \times 10^{6} \mathrm{~Pa} \\
& S_{\min }=\frac{|M|}{\sigma_{\text {all }}}=\frac{256 \times 10^{3}}{160 \times 10^{6}}=1.6 \times 10^{-3} \mathrm{~m}^{3}=1600 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

Shape	$S\left(10^{3} \mathrm{~mm}^{3}\right)$
$\mathrm{S} 510 \times 98.2$	1950
$\mathrm{~S} 460 \times 104$	1685

PROBLEM 5.90

Beams $A B, B C$, and $C D$ have the cross section shown and are pin-connected at B and C. Knowing that the allowable normal stress is +110 MPa in tension and -150 MPa in compression, determine (a) the largest permissible value of \mathbf{P} if beam $B C$ is not to be overstressed, (b) the corresponding maximum distance a for which the cantilever beams $A B$ and $C D$ are not overstressed.

SOLUTION

$$
\begin{aligned}
M_{B} & =M_{C}=0 \\
V_{B} & =-V_{C}=P
\end{aligned}
$$

Area B to E of shear diagram: 2.4P

$$
M_{E}=0+2.4 P=2.4 P=M_{F}
$$

Centroid and moment of inertia:

Part	$A\left(\mathrm{~mm}^{2}\right)$	$\bar{y}(\mathrm{~mm})$	$A \bar{y}\left(\mathrm{~mm}^{3}\right)$	$d(\mathrm{~mm})$	$A d^{2}\left(\mathrm{~mm}^{4}\right)$	$\bar{I}\left(\mathrm{~mm}^{4}\right)$
(1)	2500	156.25	390,625	34.82	3.031×10^{6}	0.0326×10^{6}
(2)	1875	75	140,625	46.43	4.042×10^{6}	3.516×10^{6}
Σ	4375		531,250		7.073×10^{6}	3.548×10^{6}

$$
\begin{aligned}
& \bar{Y}=\frac{531,250}{4375}=121.43 \mathrm{~mm} \\
& I=\Sigma A d^{2}+\Sigma \bar{I}=10.621 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Location	$y(\mathrm{~mm})$	$I / y\left(10^{3} \mathrm{~mm}^{3}\right)$
Top	41.07	258.6
Bottom	-121.43	-87.47

Bottom	-121.43	-87.47

PROBLEM 5.90 (Continued)

Bending moment limits: $\quad M=-\sigma I / y$

Tension at E and $F: \quad \quad-\left(110 \times 10^{6}\right)\left(-87.47 \times 10^{-6}\right)=9.622 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$

Compression at E and $F: \quad-\left(-150 \times 10^{6}\right)\left(258.6 \times 10^{-6}\right)=38.8 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$

Tension at A and $D: \quad-\left(110 \times 10^{6}\right)\left(258.6 \times 10^{-6}\right)=-28.45 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$

Compression at A and $D: \quad-\left(-150 \times 10^{6}\right)\left(-87.47 \times 10^{-6}\right)=-13.121 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$
(a) Allowable load P :
$2.4 P=9.622 \times 10^{3} \quad P=4.01 \times 10^{3} \mathrm{~N}$
$P=4.01 \mathrm{kN}$
Shear at A :

$$
V_{A}=P
$$

Area A to B of shear diagram: $\quad a V_{A}=a P$
Bending moment at A :
(b) Distance a : $-4.01 \times 10^{3} a=-13.121 \times 10^{3}$ $a=3.27 \mathrm{~m}$

